Graded Integral Domains and Nagata Rings , Ii

نویسندگان

  • Gyu Whan Chang
  • G. W. Chang
چکیده

Let D be an integral domain with quotient field K, X be an indeterminate over D, K[X] be the polynomial ring over K, and R = {f ∈ K[X] | f(0) ∈ D}; so R is a subring of K[X] containing D[X]. For f = a0 + a1X + · · ·+ anX ∈ R, let C(f) be the ideal of R generated by a0, a1X, . . . , anX n and N(H) = {g ∈ R | C(g)v = R}. In this paper, we study two rings RN(H) and Kr(R, v) = { fg | f, g ∈ R, g 6= 0, and C(f) ⊆ C(g)v}. We then use these two rings to give some examples which show that the results of [4] are the best generalizations of Nagata rings and Kronecker function rings to graded integral domains.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Generalization of Kronecker Function Rings and Nagata Rings

Let D be an integral domain with quotient field K. The Nagata ring D(X) and the Kronecker function ring Kr(D) are both subrings of the field of rational functions K(X) containing as a subring the ring D[X] of polynomials in the variable X. Both of these function rings have been extensively studied and generalized. The principal interest in these two extensions ofD lies in the reflection of vari...

متن کامل

Semistar dimension of polynomial rings and Prufer-like domains

Let $D$ be an integral domain and $star$ a semistar operation stable and of finite type on it. We define the semistar dimension (inequality) formula and discover their relations with $star$-universally catenarian domains and $star$-stably strong S-domains. As an application, we give new characterizations of $star$-quasi-Pr"{u}fer domains and UM$t$ domains in terms of dimension inequal...

متن کامل

Nagata Rings, Kronecker Function Rings and Related Semistar Operations

In 1994, Matsuda and Okabe introduced the notion of semistar operation. This concept extends the classical concept of star operation (cf. for instance, Gilmer’s book [20]) and, hence, the related classical theory of ideal systems based on the works by W. Krull, E. Noether, H. Prüfer and P. Lorenzen from 1930’s. In [17] and [18] the current authors investigated properties of the Kronecker functi...

متن کامل

Surjectivity of multiplication and F -regularity of multigraded rings

Let R be a noetherian Z-graded integral domain. Then the subset Σ(R) := {λ ∈ Z | Rλ 6= 0} is a finitely generated subsemigroup of Z. We say that R is surjectively graded if for any λ, μ ∈ Σ(R), the product Rλ⊗R0 Rμ → Rλ+μ is surjective. This is essentially a generalization of the degree-one generation property of N-graded rings. The purpose of this paper is to study this property, mainly for no...

متن کامل

Extensions of Commutative Rings in Subsystems of Second Order Arithmetic

We prove that the existence of the integral closure of a countable commutative ring R in a countable commutative ring S is equivalent to Arithmetical Comprehension (over RCA0). We also show that i) the Lying Over ii) the Going Up theorem for integral extensions of countable commutative rings and iii) the Going Down theorem for integral extensions of countable domains R ⊂ S, with R normal, are p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017